16,869 research outputs found

    Monomers for thermosetting and toughening epoxy resins

    Get PDF
    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air

    Scaled-Particle Theory and the Length-scales Involved in Hydrophobic Hydration of Aqueous Biomolecular Assemblies

    Full text link
    Hydrophobic hydration plays a crucial role in self-assembly processes over multiple length-scales, but the extrapolation of molecular-scale models to larger length-scale hydration phenomena is sometimes not warranted. Scaled-particle theories are based upon an interpolative view of that issue. We revisit the scaled-particle theory proposed thirty years ago by Stillinger, adopt a practical generalization, and consider the implications for hydrophobic hydration in light of our current understanding. The generalization is based upon identifying a molecular length, implicit in previous applications of scaled-particle models, that provides an effective radius for joining microscopic and macroscopic descriptions. We demonstrate that the generalized theory correctly reproduces many of the anomalous thermodynamic properties of hydrophobic hydration for molecularly sized solutes, including solubility minima and entropy convergence, successfully interpolates between the microscopic and macroscopic extremes, and provides new insights into the underlying molecular mechanisms. The results are discussed in terms of length-scales associated with component phenomena; in particular we first discuss the micro-macroscopic joining radius identified by the theory, then we discuss in turn the Tolman length that leads to an analogous length describing curvature corrections of a surface area model of hydrophobic hydration free energies, and the length-scales on which entropy convergence of hydration free energies are expected.Comment: 19 pages, 14 figures, one figure added, submitted to Rev. Mod. Phy

    Fabrication process of a high temperature polymer matrix engine duct

    Get PDF
    The process that was used in the molding of an advanced composite outer by-pass duct planned for the F404 engine is discussed. This duct was developed as a potential replacement for the existing titanium duct in order to reduce both the weight and cost of the duct. The composite duct is now going into the manufacturing technology portion of the program. The duct is fabricated using graphite cloth impregnated with the PMR-15 matrix system

    Balancing Local Order and Long-Ranged Interactions in the Molecular Theory of Liquid Water

    Full text link
    A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasi-chemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have significant consequences for the thermodynamic properties that distinguish water from many other liquids. The basic subtlety of liquid water is found then in the competition of several effects which must be quantitatively balanced for realistic results.Comment: 8 pages, 6 figure

    Quasi-Chemical Theory and Implicit Solvent Models for Simulations

    Get PDF
    A statistical thermodynamic development is given of a new implicit solvent model that avoids the traditional system size limitations of computer simulation of macromolecular solutions with periodic boundary conditions. This implicit solvent model is based upon the quasi-chemical approach, distinct from the common integral equation trunk of the theory of liquid solutions. The physical content of this theory is the hypothesis that a small set of solvent molecules are decisive for these solvation problems. A detailed derivation of the quasi-chemical theory escorts the development of this proposal. The numerical application of the quasi-chemical treatment to Li+^+ ion hydration in liquid water is used to motivate and exemplify the quasi-chemical theory. Those results underscore the fact that the quasi-chemical approach refines the path for utilization of ion-water cluster results for the statistical thermodynamics of solutions.Comment: 30 pages, contribution to Santa Fe Workshop on Treatment of Electrostatic Interactions in Computer Simulation of Condensed Medi
    corecore